Rate of Growth of Hypercyclic and Frequently Hypercyclic Functions for the Dunkl Operator
نویسندگان
چکیده
منابع مشابه
About Subspace-Frequently Hypercyclic Operators
In this paper, we introduce subspace-frequently hypercyclic operators. We show that these operators are subspace-hypercyclic and there are subspace-hypercyclic operators that are not subspace-frequently hypercyclic. There is a criterion like to subspace-hypercyclicity criterion that implies subspace-frequent hypercyclicity and if an operator $T$ satisfies this criterion, then $Toplus T$ is sub...
متن کاملDifference sets and frequently hypercyclic weighted shifts
We solve several problems on frequently hypercyclic operators. Firstly, we characterize frequently hypercyclic weighted shifts on l(Z), p ≥ 1. Our method uses properties of the difference set of a set with positive upper density. Secondly, we show that there exists an operator which is U-frequently hypercyclic, yet not frequently hypercyclic and that there exists an operator which is frequently...
متن کاملHypercyclic Behaviour of Operators in a Hypercyclic C0-Semigroup
Let {Tt}t≥0 be a hypercyclic strongly continuous semigroup of operators. Then each Tt (t > 0) is hypercyclic as a single operator, and it shares the set of hypercyclic vectors with the semigroup. This answers in the affirmative a natural question concerning hypercyclic C0-semigroups. The analogous result for frequent hypercyclicity is also obtained.
متن کاملInterpolation by hypercyclic functions for differential operators
We prove that, given a sequence of points in a complex domain Ω without accumulation points, there are functions having prescribed values at the points of the sequence and, simultaneously, having dense orbit in the space of holomorphic functions on Ω . The orbit is taken with respect to any fixed nonscalar differential operator generated by an entire function of subexponential type, thereby ext...
متن کاملSpectrum of a Weakly Hypercyclic Operator Meets the Unit Circle
Suppose that T is a bounded operator on a nonzero Banach space X . Given a vector x ∈ X , we say that x is hypercyclic for T if the orbit OrbTx = {T x}n is dense in X . Similarly, x is said to be weakly hypercyclic if OrbTx is weakly dense in X . A bounded operator is called hypercyclic or weakly hypercyclic if it has a hypercyclic or, respectively, a weakly hypercyclic vector. It is shown in [...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mediterranean Journal of Mathematics
سال: 2016
ISSN: 1660-5446,1660-5454
DOI: 10.1007/s00009-016-0690-z